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Introduction  

Enzymatic hydrolysis of lignocellulosic 
material is an important step in the 
production of bioethanol. Lignocellulose 
exists in various forms, such as tree, grass, 
and wood. Bioethanol obtained from the 
hydrolysis of lignocellulose is accepted to be 
a good transportation fuel (Bommarius et                                         

al., 2009). Lignocellulose does not contain 
only cellulose; it also contains 
hemicelluloses and lignin (Natalija, 2007). 
Therefore, bio ethanol obtained from 
Lignocellulose is produced through four 
consecutive steps: 

A B S T R A C T  

In this work, experimental conversion-time data for the enzymatic 
hydrolysis of cellulose was transformed into the concentration-rate data by 
the application of Tikhonov regularization technique (TRT). Converting 
conversion-time data into concentration-rate data through TRT transforms 
an otherwise ill-posed problem to one where the noise in the original data 
resulting in unreliable results is minimized. Enzymatic hydrolysis of 
cellulose is the breaking down of cellulose into smaller molecules such as 
glucose, cellobiose using enzyme(s). Here, three reaction kinetic models of 
enzymatic hydrolysis of cellulose were proposed and their kinetic 
parameters were determined using concentration-rate data obtained from 
Tikhonov regularization technique and Nelder Mead optimization 
technique for parameter estimation and model discrimination. Based on the 
fact that model 1 has no kinetic parameter with negative value and its 
objective functions are smaller than that of model 2, it was chosen as the 
best model describing the enzymatic hydrolysis of cellulose. 
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Pre-treatment: To remove the lignin and 
hemicellulose. 

 
Hydrolysis: To breakdown the cellulose 
to glucose. 

 
Fermentation: Decomposition of glucose 
to bio ethanol. 

 
Separation: For purification of the bio 
ethanol. 

a) Significance and objectives of the study 
is, in reaction kinetics investigation, 
determination of the rate and equilibrium 
constants to minimize the deviation of 
the computed time-concentration profile 
from its experimentally observed 
counterpart becomes more complicated 
for those are not simple and cannot be 
found analytical solution. Tikhonov 
regularization technique is used to 
convert the concentration-time data to 
reaction rate-concentration.  

b) Comparison of the time-concentration 
against proposed time-concentration data 

c) Proposed kinetic model  
d) Determine the kinetic parameters of the 

proposed models 
e) Scrutinize the proposed models to 

determine the best model  

The aim of this paper is to apply Tikhonov 
regularization to well documented kinetic 
data from the previous work of Bommarius 
et al (1978) and to determine the kinetic 
parameters of three proposed kinetic models 
for the enzymatic hydrolysis of cellulose.  

The relationship between the reaction rate 
r(t) and the time-concentration profile C(t) 
can be written as:  

                                             (1)  

This can be rewritten as:                                                                                                             

                         (2)  

the problem of obtaining r(t) is an ill-posed 
problem in the sense that if inappropriate 
methods are used, it will lead to inaccurate 
results (Engl et al., 2000). Instead of solving 
Equation (2) directly for r(t), this equation, 
through integration by parts, can be 
transformed into:  

 

  (3) 
                                                        

             (4) 
            

                 (5)                                   
          

                                                           

     

      (6)  

          (7) 
                          

         Where  

 

and r0 = r(0) is the 
initial rate.   

Equation (7) is the starting point of the 
present investigation. Inputs to this equation 
are the experimentally measured time-
concentration data points:   

  

is the number of points in the set and is 
usually a relatively small number, typically 
around 10 50. The data points may or may 
not be regularly spaced out in time. From 
the way Equation (7) was obtained it is clear 
that this equation is independent of the order 
of the reaction and its nature.  

Discretizing the Volterra integral 
equation  

In discretized form equation (7) becomes:    
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      (8) 

Where,                   

     
           

Where, 

 

are the 
discretized f(t). The independent variable 

 

is divided into 

 

uniformly 
spaced discretized points with step size 

 .  

In the present investigation 

  

is typically 

of the order of 101 to 401. = 

 

is the 

largest 

 

in the data set. 

 

is the 
coefficient arising from the numerical 
scheme used to approximate the integral in 
Eq. (8). For Simpson s 1/3 rule, used 
throughout the present investigation, 

=2/3 for odd j (except 

 

=1/3) and 4/3 

for even j. Depending on whether the 

 

of 
the experimental data point coincides with a 

discretized point, the last 

  

associated 
with this point may have to be adjusted, by 
interpolation, to allow for fractional step 
size.  

The deviation of  from  is given by  

      

     (9) 
                                         

     (10)          

Or in matrix notation,   

    

 

             (11)                                                                               

C and B are × 1 column vectors and A is 

a ×

  

matrix of coefficient of the 
unknown column vector   

       

While C, B and A are given by  

                                (12) 

                                                (13) 

for         (14)  

In Equation (14) 

  

are 
the times at which the concentration is 

measured and 

  

are 
then uniformly discretized 

time . NK generally exceeds 
the number of data points ND, thus A is not a 
square matrix and Equation (3) cannot be 
inverted to give a unique f, C0 and r0. 
Instead, these unknowns are selected to 

minimize the sum of squares of , i.e. to 
minimize  

           

     (15)   

Tikhonov regularization   

To obtain smooth solutions to ill-posed 
problems, the standard Tikhonov 
regularization method is most often used. 
Hadamard defined a linear problem to be 
well posed if it satisfies the following three 
requirements: (a) existence, (b) uniqueness, 
and (c) stability. A problem is said to be ill-
posed if one or more of these requirements 
are not satisfied. A classical example of an 
ill-posed problem is a linear integral 
equation of the first kind in L2 (I) with a 
smooth kernel. A solution to this equation, if 
it exists, does not continuously depend on 
the right-hand side and may not be unique. 
When a discretization of the problem is 
performed, we obtain a matrix equation in 
Cm,   
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Ku=f                                                        (16)   

where K is an m×n matrix with a large 
condition number, m  n. A linear least 
squares solution of the system (1) is a 
solution to the problem.  

Min Ku f 2                                              
(17)  

u Cn  

Where, the Euclidean vector norm in Cm is 
used. We say that the algebraic problems 
(16) and (17) are discrete ill-posed 
problems.  

The numerical methods for solving discrete 
ill-posed problems in function spaces and 
for solving discrete ill-posed problems have 
been presented in many papers. These 
methods are based on the so-called 
regularization methods. The main objective 
of regularization is to incorporate more 
information about the desired solution in 
order to stabilize the problem and find a 
useful and stable solution. The most 
common and well-known form of 
regularization is that of Tikhonov (Groetsch, 
1984). It consists in replacing the least-
squares problem (2) by that with a suitably 
chosen Tikhonov functional. The most basic 
version of this method can be presented as  

min{ Ku f 2+ 2 u }                                
(18)  

u Cn   

Where,  

 
R is called the regularization 

parameter. The Tikhonov regularization is a 
method in which the regularized solution is 
sought as a minimiser of a weighted 
combination of the residual norm and a side 
constraint. The regularization parameter 
controls the weight given to the 
minimization of the side constraint.  

Minimizing 

 

in equation (15) will not in 
general result in a smooth f(t) because of the 
noise in the experimental data. To ensure 
smoothness, additional conditions have to be 
imposed. In the present investigation, the 
additional condition is the minimization of 
the sum of squares of the second derivative 
d2f/dt 2 at the internal discretization points. 
In terms of the column vector f, this 
condition takes on the form of minimizing  

(19)  

Where, 

 

is the tri-diagonal matrix of 
coefficients arising from the finite difference 

approximation of  

  

         
     (20)  

In Tikhonov regularization (Engl et al., 

2000) instead of minimizing 

 

and 

 

separately, a linear combination of 

these two quantities is 
minimized.  is an adjustable 
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weighting/regularization factor that controls 
the extent to which the noise in the kinetic 
data is being filtered out. It balances the two 
requirements on f(t):  

a. fitting the experimental data  
b. Remaining as smooth as possible. 

A large  will give a smooth f(t) but at the 
expense of the goodness of fit of the kinetic 
data and vice versa.     

Minimizing R becomes: 

  (20) 

                                              (21)                                                                                

                                              (22)                            
These give rise to a set of linear algebraic 
equations for f, C0 and r0 (assuming that 
both initial conditions are unknown). It can 

be shown (Shaw & Tigg, 1994) that the f, 

 

and 

 

that satisfy Equations (20) to (21) are 
given by  

               (23) 
For convenience f

 

is used to denote the 
column vector 

 

incorporating C0 and r0 into f. A

 

is the 
composite matrix (A, C, B) derived from 
Equations (12) to (14) to reflect the 
inclusion of C0 and r0 in f. Similarly  is the 
composite matrix ( , 0, 0) where 0 is a (NK  

2) × 1 column vector of 0 to allow for the 
fact that C0 and r0 play no part in the 
smoothness condition in Equation (19). The 
f

 

given by Equation (23) can now be 
substituted into Equation (13) to give C(t). It 
can also be substituted in the defining 
equation dr(t)/dt = f(t) and integrated to give 
the reaction rate r(t).  

As f(t) is known at a large number of closely 
spaced discretization points the integration 
for r(t) and c(t) can be carried out using any 
of the standard numerical integration 
procedures. Since integration is a smoothing 
process, the resulting r(t) and c(t) can be 
expected to be well-behaved smooth 
functions. This has been observed in all the 
examples investigated.  

Regularization parameter identification  

A suitable choice of the regularization 
parameter  has to be provided by the user 
in order to apply Tikhonov regularization 
(Yeow and Taylor, 2002). An optimal 
regularization parameter should fairly 
balance the perturbation error and the 
regularization error in the regularized 
solution.  

The discrepancy principle is a-posteriori 
strategy for choosing  as a function of an 
error level (the input error level must be 
known). The generalized cross validation 
method is based on a-priority knowledge of 
a structure of the input error, which means 
that the errors in f can be considered to be 
uncorrelated zero-mean random variables 
with a common variance, i.e., white noise.  

Another practical method for choosing  
when data are noisy is the L-curve criterion 
(Hansen, 1992; Hansen and O Leary, 1993). 
The idea of the L-curve criterion is to 
choose regularization related to the 
characteristic L-shaped corner of the 
graph.   

The most appropriate value of  depends on 
factors such as the noise level in the 
experimental data, the number of data points 
ND, and discretization points NK, and the 
numerical schemes used to approximate the 
integral in Equation (13) and the second 
derivative in Equation (19). It is neither a 
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property of the reaction under investigation 
nor a (Yeow and Taylor, 2002) constant 
determined by the concentration 
measurement technique or instrument 
employed.   

If  is set too small the determinant of the 

matrix 

 

in Equation (23) may 
become close to zero and the inverse of the 
matrix becomes ill conditioned. This is a 
manifestation of the ill-posed nature of the 
problem of obtaining reaction rates from 
time-concentration data.  

Applied mathematical mehtods and 
available software package  

Methods that were previously thought to be 
too effort consuming are now commercially 
available in a number of software packages 
such as Mathematica, MAPLE, or 
MATLAB.   

Simpson rule  

Standard numerical integration procedures 
include the Simpson s rule and the 
trapezoidal rule.   

Simpson s rule is  
A  S/3 [(F +L) + 4E +2R]  

Where S is the width of each strips.  

Model discrimination and parameter 
estimation  

The laws governing the behaviour of a 
system, and can then derive equations 
describing the relationship among the 
observed quantities (Bard, 1974). Such an 
equation is termed a model, and the process 
of determining the model s parameter values 
is parameter estimation. The model is 
expressed as a mathematical program i.e one 
in which the objectives and constraints are 

given as mathematical functions and 
frictional relationships. When the model 
equations are non-linear, the determination 
process may also be described as non-linear 
estimation. The determination of which the 
derived rate best fits the observed rates will 
give an insight into the actual mechanism of 
the reaction and the chosen equation can 
then be used in future predictions.  

Optimization technique  

The general objective in optimization is to 
choose a set of values of variables (or 
parameters) subject to the various 
constraints that produce the desired 
optimum response for the chosen function 
(Edgar et al., 2001). The objective function 
in this case is the sum of squares of residuals 
between experimental and predicted rates of 
reaction.  

 

                        (24)  

The smaller the value of S, the better the 
model fits the data and the more reliable the 
value of the kinetic parameters thus 
obtained. The method used in the present 
investigation is called Flexible tolerance 
method (Paviani and Himmelblau, 1969) 
which incorporates portions of the 
polyhedron method with the additional 
advantage of not restricting intermediate 
iteration to feasible region. The method of 
Nelder-Mead is the method that alters the 
shape of the simplex to suit local topology. 
The tolerance criterion is reduced within the 
region of an optimum till it reached a 
present small value.  

The flexible polyhedron search  

The Nelder-Mead s modified simplex 
method minimizes a function of independent 
variables using (n+1) vertices of a flexible 
polyhedron in En. Each vertex is defined by 
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a vector x. the vertex in En, which yields the 
highest value of f(x) by better point until 
minimum f(x) is found.  

The details of the algorithm are as follows:  

Let xi(k) =[xi(k) .,xij(k)], 
I=1, ..,n+1, be the vertex(point) in En on 
the kth stage of search. K=0,1 .., and let the 
value of the objective function at xi(k) be 
f(xi(k)). Xn+2. In addition, we need to label x 
vectors in the polyhedron that gives the 
maximum and minimum values of f(x).  

Define  
f(xh(k)) = max{f(xh(k)) f(xn+1(k))}  

With corresponding, xi(k) =xh(k)  

In addition, f(xh(k)) = 
min{f(xi(k)) f(xn+1(k))}  

With the corresponding xi(k)+xh(k) since the 
polyhedron in En is made up of (n+1) 
vertices, Xn, ..Xn+1, let Xn+2 be the centroid 
of all vertices excluding Xh. The coordinates 
of the centroid are given by:  

X(k)
n+2,j = 1/n[ (Xij

(k) 

 

Xhj
(k)]                                             

j=1, n  

Where, index j designates each co-ordinate 
direction. The initial polyhedron usually is 
selected to be a regular simplex.  

Methodology  

Processing the time-conversion data into 
reaction rate- concentration data  

Bommarius et al. (1978) investigated the 
kinetics of the enzymatic hydrolysis of 
cellulose and obtained the experimental data 
in form of conversion of cellulose against 
time. The data was for the reaction occurring 

at enzyme concentration; 1.5U, 15U and 
30U.  

The stage wise analysis of the conversion of 
the data from conversion-time data to 
reaction rate-concentration data, taking the 
initial conversion of glucose to be zero for 
1.5U enzyme concentration:  

  

Step one:  Divide the independent 

variable, time(t), where is 
divided uniformly spaced discretization 

points  with step size  

    

  

Step two:  Generate 

 

from simpson s 

1/3 rule, where 

 

for odd j (except 

 ) and 4/3 for every even j  

Step three:  Compute 

 

in equation 
(14)  

Step four:  Compute t in equation (14)

  

Step five:  Compute Aij using equation (14)  

Step six:   Compute matrix A, where A is a 9 
x 1000 matrix of coefficients of unknown 
column vector  

Step seven: Compute matrix C, where C is a 
9 x 1 matrix of ones 
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C=       

1

1

1

1

1

1

1

1

1

     

Step eight: Compute matrix B from equation 
(13), where B is a 5x1 matrix of ti s. 

B =       

1

2

3

4

5

6

7

8

9

t

t

t

t

t

t

t

t

t

  

Step nine:  Compute A using equation (14)  

A= 

 

Step ten:  Compute composite matrix A 

where 

  

which is a 9 x1002 
matrix  

Step eleven:  Compute the transpose of A .

 

Compute 

 

using equation (11), where  is a 
tri-diagonal matrix of 1000 x 1000 square 
matrix  

            
Step twelve:  Compute matrix 0 where 
matrix 0 is a 998 x 1 column vector of 0  

Step thirteen:  Compute  where  is a 
composite matrix ( , 0, 0).

  

Step fourteen: Compute f using equation 
(15) for each value of CM  

Step fifteen: Compute Cc(t) using equation 
(13) which is solved by Simpson s 
numerical method of integration.  

Step sixteen: Calculate r(t) using equation 
r(t) =  f(t)dt using Simpson s numerical 
method.  

Steps one to sixteen is carried out by 
MATLAB software package by imputing 
different conversion and time at different 
enzyme concentration   

General methods of modelling of 
enzymatic hydrolysis  

The first step-in modelling of this process is 
the development of a conceptual model 
where both reaction schemes and the 
mechanisms are discarded. The model 
reviewed show one or more of these three 
different reaction schemes are discarded. 
The simplest one only considers the direct 
formation from cellulose to glucose and the 
second one considers intermediate 
production of disaccharide cellobiose from 
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cellulose for the subsequent conversion to 
glucose. Finally, the most implemented one 
added to this second type the direct 
hydrolysis from cellulose to glucose.  

   

Factors affecting enzymatic  

Factors affecting enzymatic hydrolysis of 
cellulose can be classified into two groups:. 

 

Enzyme related factors 

 

Substrate related factors  

Enzyme related factors   

Enzymes concentration, adsorption, 
synergising, end-product inhibition, 
mechanical deactivation, thermal 
inactivation and irresistible binding to lignin    

Physical proportion of substrate affecting 
hydrolysis  

Crystalline of cellulose, degree of polymer 
reaction, accessible surface area, structural 
organisation and presence of associated 
materials such as hemicellulose and lignin.  

Mechanistic models development       

Mechanism 1                   

The first kinetic model to be used was 
proposed by Ryu et al. (1982). The kinetic 
model for the enzymatic hydrolysis of 
cellulose was derived based on the following 
assumptions; 

1. The cellulosic material SO is 
composed of amorphous matter Sa, 
crystalline matter Sc, and 
nonhydrolyzable merts Sx and their 
rates of enzymatic degradation are 
different. 

2. The Cellulases system can be 
represented quantitatively by single 
enzyme E. 

3. The Cellulases enzyme is first 
adsorbed E* on the surface of 
cellulose, followed by enzyme-
substrate formation E*S and the 
hydrolysis to release both product 
and enzyme. 

4. The products (glucose and 
cellobiose) inhibit the cellulase 
enzyme competitively.  

The reaction scheme based on the above 
assumptions can be written as follows;  

  

          

        

Where P is product (Glucose and cellulose) 
The adsorption of the enzyme, equation (1) 
and (2) can be described by Langmuir-type 
adsorption isotherm.  

  

Where 

 

is concentration of the 

maximum adsorbed enzyme and 

 

is the 
adsorption constant.  
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At low enzyme concentration;  

 
And equation (13) becomes 

  

Where  

  

The rate determining steps are equation (11) 
and (12). Therefore, the rate of product 
formation from equation (11) and (12) is, if 
we assume total enzyme content is constant. 

 

If we assume that the total enzyme content is 
constant  

  

Using steady-state approximation, the 
change in intermediate concentrations is 
given as; 

           

Where   

          

Where  

        

Where 

         

Where  

  

Dividing equation (17) by (18), we obtain 

  

From equation (15), we obtain  

  

Substituting equation (21) into (22), we 
obtain 
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From equation (14), we obtain 

 
Substituting equation (17) into (14), we 
obtain 

 

Substituting equation (26) into (20), we 
obtain 

 

From equation (21), we obtain 

 

Substituting equation (26) into (21), we 
obtain 

 

Substituting equation (24) to (27) into (16) 
yields 

    

Substituting equation (29) into (24) yields 

   

If we define 

 

And  

  
Substituting equation (31) and (32) into (30) 
and rearranging yield   

  

From literature, the value of 

 

for non-

pretreated avicel is 0.8, 

 

is 0.04 and 
average degree of polymerization is 325   

The second kinetic model to be used was 
proposed by Shen and Agblevor (2008a). 
The kinetic model for the enzymatic 
hydrolysis of cellulose was derived based on 
the following assumptions;  

1. The endo- -1,4-glucanase, exo- -
1,4-cellobiohydrolase and 
glycosidase enzymes were assumed 
to form a single combined effect on 
the hydrolysis of insoluble substrate 
to breakdown substrate to produce 
reducing sugar 

2. The surface and structure of 
insoluble substrate was considered 
homogeneous (i.e. there is no 
distinction between crystalline and 
amorphous region). This assumption 
is also in agreement with 
requirement of the Langmuir 
adsorption model. 

3. Ineffective production of enzyme-
substrate complexes. 

4. The enzyme deactivation was 
assumed to be second order reaction 
and was consider the main factor 
influencing the hydrolytic rate. 

5. There is only one reaction that 
occurred: direct transformation of 
cellulose to glucose  

The reaction scheme based on the above 
assumptions can be written as follows;  
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Ineffective enzyme adsorption; 

 
From the assumption (4) 

    

Mass balance 

  

Where 

  

Assuming 

 

, equation (35) 
becomes 

 

From (33), (34) and (36), we obtain 

 

Using steady-state approximation, equation 
(34) becomes 

         

Substituting equation (38) into (36), we 
obtain 

   
Substituting equation (40) into (38), we 
obtain 

  

From equation (36) 

 

Substituting equation (44) into (45), we 
obtain 

   

Integrating equation (47) using boundary 
conditions;  

  

Substituting equation (48) into (46), we 
obtain 

  

The third kinetic model to be used was 
derived from Michaelis-Menten approach 
with product (glucose) inhibition. The 
kinetic model for the enzymatic hydrolysis 
of cellulose was derived based on the 
following assumptions;  

1. The endo- -1,4-glucanase, exo- -
1,4-cellobiohydrolase and 
glycosidase enzymes were assumed 
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to form a single combined effect on 
the hydrolysis of insoluble substrate 
to breakdown substrate to produce 
reducing sugar 

2. The cellulose and cellulase system is 
assume to be homogeneous  

       

From equation (50) and (51), we obtain 

     

From equation (53) and (54), we obtain   

        

Substituting equation (56) into (57), we 
obtain 

 

Enzyme balance 

  
Substituting equation (56) to (58) into (59), 
we obtain 

   

Substituting equation (55) into (60), we 
obtain 

   

These are three kinetic models to be used 
are;  

    

Parameter estimation  

Estimation of the kinetic parameters of the 
six proposed rate models will be 
accomplished by least square fitting of the 
rate equations into the concentration 
reaction rate curve. The Nelder Mead 
simplex method (Polyhedron search method) 
is used to achieve this using MATLAB 
software package.  

Results and Discussion  

Figure 1-6 show that Tikhonov 
regularization technique has successfully 
converted the concentration-time data to 
rate-time data. Looking at the kinetic 
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parameters obtained for three models, it is 
only the second model that satisfied this 
condition. Which is the model proposed by 
Shen and Agblevor (2008a, b).  Therefore, 
model 2 is the best model describing 
enzymatic hydrolysis of cellulose.   

The conclusion of the study is Tikhonov 
regularization provides a reliable way of 
converting the time-concentration data of 
reaction kinetics into concentration-reaction 
rate data. The procedure is independent of 
reaction rate model and is applicable to a 
wide variety of reactions as noise 
amplification is kept under control, the 
resulting concentration-reaction rate curve 
allows the rate constants in any rate model 
used to describe the reaction to be 
determined with relative ease and reliability.   

Using the results obtained from Tikhonov 
regularization technique, model 2 was 
determined to be the best model describing 
enzymatic hydrolysis of cellulose   

 

The following recommendations are given 
based on the challenges faced during the 
course of the project 

 

More reaction mechanisms should be 
obtained to determine their kinetic 
parameters for comparison 

 

Further researches should be carried 
out on Tikhonov Regularization 
technique to be able to applied it to 
other types of reactor rather than 
batch reactor   

Objective function and parameter estimation for model 1  

Enzyme Concentration

 

1.5U 15U 30U 

 

0.174 0.380 0.089 

 

0.051 0.042 0.113 

 

0.005 0.01 0.077 

 

0.061 0.051 0.172 

 

0.157 0.215 0.137 

 

0.281 0.035 0.031 

Objective function 3.10586E-4

 

6.27935E-4

 

5.7264E-3

  

Objective function and parameter estimation for model 2  

Enzyme Concentration

 

1.5U 15U 30U 

 

0.958 0.960 0.980 

 

0.459 0.442 0.395 

 

0.384 0.372 0.255 

Objective function 9.85942E-3

 

3.0248E-3

 

5.12647E-3

  

Objective function and parameter estimation for model 3  

Enzyme Concentration

 

1.5U 15U 30U 
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1.184  0.082  0.038 

 
0.051 -0.018 -0.037 

 
0.06   0.034   0.022 

Objective function 2.76554E-4

 
4.01324E-3

 
2.047543E-3

   

Table.1 Measured conversion and time for enzyme concentration of 1.5U 
Time(h)

 

Conversion

 

2 0.08 
8 0.14 
10 0.16 
12 0.34 
20 0.51 
50 0.54 
60 0.54 
70 0.60 
95 0.68 

 

Table.2 Measured conversion and time for enzyme concentration of 15U                 

Table.3 Measured conversion and time for enzyme concentration of 30U          

Time(h)

 

Conversion

 

2 0.19 
4 0.25 
6 0.35 
8 0.40 
12 0.46 
20 0.59 
29 0.62 
50 0.72 
60 0.76 
70 0.78 
82 0.82 
90 0.84 

Time (h)

 

Conversion

 

2 0.34 
4 0.40 
8 0.46 
10 0.52 
20 0.78 
29 0.82 

40 0.88 
50 0.94 
60 0.96 
95 0.98 
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Table.4 For enzyme concentration 1.5U             

Table.5 For enzyme concentration 15U              

Table.6 For enzyme concentration 30U            

rate concentration

 

0.0001 0.0159 
0.0126 0.0647 
0.0073 0.0810 
0.0095 0.0972 
0.0161 0.1623 
-0.0059

 

0.4062 
0.0047 0.4876 
0.0075 0.5689 
-0.0152

 

0.7722 

Rate Concentration

 

0.0229 0.0454 
0.0483 0.0672 
0.0257 0.0890 
0.0325 0.1108 
-0.0000

 

0.1544 
0.0263 0.2416 
-0.0023

 

0.3397 
0.0011 0.5686 
0.0078 0.6776 
0.0118 0.7866 
0.0095 0.9174 

Rate Concentration

 

   -0.0127

 

    0.0690 
    0.0150     0.1523 
    0.0152     0.3188 
-0.0152 0.4020 
0.0110 0.8183 
-0.0064 1.1929 
-0.0239 1.6508 
-0.0308 2.0671 
-0.0028 2.4833 
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Table.7 initial reaction rate and conversion     

Figure.1 Graph of regularized reaction 
rate-conversion for enzyme concentration of 1.5U  

  

Figure.2 Graph of back calculated and measured conversion against time  
enzyme concentration of 1.5U  

  

Figure.3 Graph of regularized reaction rate-conversion for enzyme  concentration of 15U  

  
Enzyme 
concentration 

Initial 
rate 

Initial 
concentration 

1.5U 0.0081 0.0642 
15U 0.0109 0.1411 
30U  0.3201 

 

0.0129  
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Figure.4 Graph of back calculated and measured conversion against time  
enzyme concentration of 15U  

   

Figure.5 Graph of regularized reaction rate-conversion for enzyme concentration of 30U  

  

Figure.6 Graph of back calculated and measured conversion against time  
enzyme concentration of 30U  
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